Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=C23

Direct product G=N×Q with N=C3×C3⋊S3 and Q=C23
dρLabelID
C3⋊S3×C22×C6144C3:S3xC2^2xC6432,773

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊C23 = C2×S33φ: C23/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3):C2^3432,759
(C3×C3⋊S3)⋊2C23 = S32×C2×C6φ: C23/C22C2 ⊆ Out C3×C3⋊S348(C3xC3:S3):2C2^3432,767
(C3×C3⋊S3)⋊3C23 = C22×S3×C3⋊S3φ: C23/C22C2 ⊆ Out C3×C3⋊S372(C3xC3:S3):3C2^3432,768
(C3×C3⋊S3)⋊4C23 = C22×C324D6φ: C23/C22C2 ⊆ Out C3×C3⋊S348(C3xC3:S3):4C2^3432,769

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=C23
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1C23 = S3×S3≀C2φ: C23/C1C23 ⊆ Out C3×C3⋊S3128+(C3xC3:S3).1C2^3432,741
(C3×C3⋊S3).2C23 = S3×PSU3(𝔽2)φ: C23/C1C23 ⊆ Out C3×C3⋊S32416+(C3xC3:S3).2C2^3432,742
(C3×C3⋊S3).3C23 = C6×S3≀C2φ: C23/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3).3C2^3432,754
(C3×C3⋊S3).4C23 = C6×PSU3(𝔽2)φ: C23/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3).4C2^3432,757
(C3×C3⋊S3).5C23 = C2×S3×C32⋊C4φ: C23/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3).5C2^3432,753
(C3×C3⋊S3).6C23 = C2×C33⋊D4φ: C23/C2C22 ⊆ Out C3×C3⋊S3244(C3xC3:S3).6C2^3432,755
(C3×C3⋊S3).7C23 = C2×C322D12φ: C23/C2C22 ⊆ Out C3×C3⋊S3248+(C3xC3:S3).7C2^3432,756
(C3×C3⋊S3).8C23 = C2×C33⋊Q8φ: C23/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3).8C2^3432,758
(C3×C3⋊S3).9C23 = C2×C6×C32⋊C4φ: C23/C22C2 ⊆ Out C3×C3⋊S348(C3xC3:S3).9C2^3432,765
(C3×C3⋊S3).10C23 = C22×C33⋊C4φ: C23/C22C2 ⊆ Out C3×C3⋊S348(C3xC3:S3).10C2^3432,766

׿
×
𝔽